1100 BROADWAY, OAKLAND, CA

Sonja Hinish Structural Option Integrated BAE/MAE Program Advisor: Dr. Linda Hanagan Senior Thesis Final Presentation April 14, 2008

- Existing Conditions Proposal Wind
- Introduction

 - · Project Goals
 - · Structural System Redesign
 - Gravity System
 - Lateral System
 - Impact on Foundations
 - Lateral Analysis
 - Seismic
 - **Breadth Studies**
 - Overall Summary and Conclusions

Introduction

- **Existing Conditions**
- Structural System Redesign

- Lateral Analysis
- Breadth Studies

Overall Summary and Conclusions

INTRODUCTION TO 1100 BROADWAY

INTRODUCTION

- Introduction
- Existing Conditions
- Proposal
- Project Goals
- Structural System Redesign Gravity System
 - Lateral System
- Impact on Foundations
- Lateral Analysis
 - Wind Seismic
- **Breadth Studies**
- Overall Summary and Conclusions

- · Owner: · Architect:
- Structural Engineer:

- SKS Investments, San Francisco, CA
- Kaplan McLaughlin Diaz Architects, San Francisco, CA Simpson Gumpertz & Heger, Inc., San Francisco, CA

INTRODUCTION

- Introduction
- Existing Conditions
- Proposal
- Project Goals
- · Structural System Redesign
 - Gravity System Lateral System
- Impact on Foundations Lateral Analysis
 - Wind
 - Seismic
- **Breadth Studies**
- Overall Summary and Conclusions

Architecture

New high-rise tower combined with the adaptive reuse of the Key System building facade

INTRODUCTION

- Introduction
- Existing Conditions
- Proposal
- Project Goals
- Structural System Redesign
 - Gravity System
- Lateral System
- Impact on Foundations
- Lateral Analysis
 - WindSeismic
- Seismic
- Breadth Studies
 Overall Summary and Conclusions

Architecture

New high-rise tower combined with the adaptive reuse of the Key System building facade

INTRODUCTION

- Existing Conditions
- Proposal
- Project Goals
- Structural System Redesign
 - Gravity System
 - Lateral System
 - Impact on Foundations
- Lateral Analysis
 - Wind
 - Seismic
- **Breadth Studies**
- Overall Summary and Conclusions

Architecture

- LEED Gold rating
- Transit Oriented Development (TOD) Photovoltaic solar panels, green roof, and a rainwater collection, filtration and reuse

Introduction

Existing Conditions

Structural System Redesign

Lateral Analysis

Breadth Studies

Overall Summary and Conclusions

EXISTING CONDITIONS

EXISTING CONDITIONS

- Introduction
- · Existing Conditions
- Proposal
- Project Goals
- Structural System Redesign
 Gravity System
 - Lateral System
- Impact on Foundations
- Lateral Analysis
 - Wind
- Seismic
- Breadth Studies
 - Overall Summary and Conclusions Latera

- Gravity system: 3½" light weight concrete fill on a 3" composite steel deck supported by composite steel beams
- Composite sized realiss

 Lateral system: Dual system composed of steel special concentric braced frames and special moment resisting frames
- Foundations:
 - Prestressed, precast concrete piles beneath a 5'-9" thick reinforced concrete mat foundation
 - Remaining portion of the foundation is a 9" thick reinforced concrete slab

EXISTING CONDITIONS

Introduction

- Existing Conditions

 Proposal Project Goals

Structural System Redesign

Gravity System

Lateral System

 Impact on Foundations Lateral Analysis

> Wind Seismic

Breadth Studies

Overall Summary and Conclusions

EXISTING CONDITIONS

- Introduction
- Existing Conditions
- Proposal
- Project Goals Structural System Redesign
 - Gravity System
 - Lateral System
 - Lateral SystemImpact on Foundations
- Lateral Analysis
 - Wind
 - Seismic
 - Breadth Studies

Overall Summary and Conclusions

Existing frames resisting forces in N/S direction

Introduction

cisting Conditions

Proposal

Project Goals Structural System Redesign

Gravity System

Impact on Foundation

Lateral Analysis

ind

eismic

Breadth Studies

Overall Summary and Conclusions

PROPOSAL

PROPOSAL

- Introduction
- Existing Conditions
- Proposal
- Project Goals
- Structural System Redesign
 - Gravity System
 - Lateral System
 - Impact on Foundations
- Lateral Analysis
 - Wind Seismic
 - **Breadth Studies**
 - Overall Summary and Conclusions

post-tensioned concrete beams Why:

Gravity System: One way mild-steel reinforced concrete slab with

Drawbacks of existing system:

Deflections

Depth

Bays exhibit one-way behavior

Limited Deflections

Location of openings not critical

Proposed Design

womanday. WORKS INCOME.

Lateral System: Concrete shear walls

Introduction

Project Goals

Structural System Redesign

Lateral Analysis

Breadth Studies

Overall Summary and Conclusions

PROJECT GOALS

PROJECT GOALS

- Introduction
- Existing Conditions
- Proposal
- · Project Goals
- · Structural System Redesign Gravity System
 - Lateral System

 - Impact on Foundations
- Lateral Analysis
 - Wind
 - Seismic
 - **Breadth Studies**
 - Overall Summary and Conclusions

Reduce total floor system depth

Become more familiar

with the design of post-

tensioned systems

Introduction

Lateral Analysis

Breadth Studies

Overall Summary and Conclusions

Existing Conditions

Structural System Redesign

STRUCTURAL SYSTEM REDESIGN

STRUCTURAL SYSTEM REDESIGN

- Introduction
- Existing Conditions
- Proposal
- Project Goals
- Structural System Redesign
 - Gravity System
 - Lateral System

 - Impact on Foundations
- Lateral Analysis
 - Wind
 - Seismic
 - **Breadth Studies**
 - Overall Summary and Conclusions

One-way slab design

Minimum slab thickness (h) according to ACI h min h min (in) 1/28 13.3 1/28 8.6 8.6

11.8

9.0

STRUCTURAL SYSTEM REDESIGN

- Introduction
- Existing Conditions
- Proposal
- Project Goals
- Structural System Redesign
 - Gravity System
 - Lateral System
- Impact on Foundations
- Lateral Analysis
 - Wind
 - Seismic

 - **Breadth Studies**
 - Overall Summary and Conclusions

One-way slab design

Slab deflections from PCA Slab

10-12

28.7

0.083

Long-term deflection Check Deflections from PCA Slab Long-term deflection Allowable A Length (ft) LL A (in) DL A (in) LL A + 3DL A (in) 1/240 27.33 0.062 0.088 1.4 0.102 0.149 0.549 1.6 20 20 5-6 20 27.33 0.067 0.084 0.319 1.4

0.11

0.413

STRUCTURAL SYSTEM REDESIGN

- Introduction
- Existing Conditions
- Proposal
- Project Goals - Structural System Redesign
 - Gravity System Lateral System
 - Impact on Foundations
- Lateral Analysis
 - Wind Seismic
 - **Breadth Studies**
 - Overall Summary and Conclusions

One-way slab design

f'c=5000 psi

Reinforcing steel: 60 ksi, #5 bars top and bottom

1	1	1

Final Slab Design:

STRUCTURAL SYSTEM REDESIGN

Introduction

Wind

- Existing Conditions
- Project Goals - Structural System Redesign
 - Gravity System Lateral System
- Impact on Foundations Lateral Analysis
 - Seismic
 - **Breadth Studies**
 - Overall Summary and Conclusions

Post-tensioned beam design

Preliminary Design:

fc=5000psi

Trial beam size of 1/22: Using 37' span amounted to a depth of 20"

1/2" diameter unbonded tendons

Precompression limits (P/A): ACI minimum of 125 psi, 200-400 psi typical for beams

Targeted load balance of 70-80% of the dead load

Class T

Analyzed as T sections for interior beams and L sections for perimeter beams

Mild steel: #4 shear and #8 for top and bottom

STRUCTURAL SYSTEM REDESIGN

- Introduction
- Existing Conditions
- Proposal
- Project Goals - Structural System Redesign
 - Gravity System
 - Lateral System
- Impact on Foundations Lateral Analysis
 - Wind
 - Seismic
 - **Breadth Studies**

 - Overall Summary and Conclusions

STRUCTURAL SYSTEM REDESIGN

- Introduction
- Existing Conditions
- Proposal
- Project Goals - Structural System Redesign
 - Gravity System
 - Lateral System
 - Impact on Foundations
- Lateral Analysis
 - Wind Seismic
 - **Breadth Studies**

 - Overall Summary and Conclusions

STRUCTURAL SYSTEM REDESIGN

- Introduction
- Existing Conditions
- Proposal
- Project Goals - Structural System Redesign
 - Gravity System
 - Lateral System
 - Impact on Foundations
- Lateral Analysis
 - Wind
 - Seismic
 - **Breadth Studies**
 - Overall Summary and Conclusions

Shear Wall Design Shear wall layout Preliminary thickness = 18" Reinforcing: 2 rows of #5 bars at 10" O.C

STRUCTURAL SYSTEM REDESIGN

- Introduction
- Existing Conditions
- Proposal
- Project Goals · Structural System Redesign
 - Gravity System
 - Lateral System
 - Impact on Foundations
- Lateral Analysis
 - Wind Seismic

Breadth Studies

Overall Summary and Conclusions

Mu (x-axis) ft-k 85367

Mu (y-axis) ft-k

		For a t
		Wall 3 4 5
er 2		С
er 2		total
	п	For a t
		Wall
	- 8	4
	100	5
	1.1.2.1004	В

	For a typical floor: Level			
		1.4D		
111		PIER 1		
1.3		axial loa		
111	Wall	(k)		
- 10	3	226		
111	4			
100	5			
_	В	59		
	c	58.5		
	total	343.5		
	For a typical fi	oor: Level 4-		
_		. 1.4D		
- 13		PIER 1		
- 88		asial loa		
111	Wall	(k)		
818	3	199		
- 10	4			
112	5			
******	В	70.5		
1-1-1-12	С	52.25		

	PIER 1	PIER 2		PIER 1	PIER 2
	axial load	axial load	Wal	axial load	axial load
	(k)	(k)	1	(k)	(k)
	226		3	324	
		30	4		14.8
		129	5		190
	59	164	8	92.5	250.5
	58.5	167.5	c	89.5	254.5
ī			tota		
	343.5	490.5	1	506	709.8
k	or: Level 4-9				
t.				1 20+1 61+6	151
ŧ.	1AD	are 3		1.20+1.6L+0	
k	1AD PIER 1	PIER 2	Mari	PIER 1	PIER 2
	1AD PIER 1 axial load	axial load	Wal	PIER 1 axial load	PIER 2 axial load
	1AD PIER 1 axial load (k)		1	PIER 1 axial load (k)	PIER 2
	1AD PIER 1 axial load	axial load (k)	3	PIER 1 axial load	PIER 2 axial load (k)
	1AD PIER 1 axial load (k)	axial load (k) 86.8	3	PIER 1 axial load (k)	PIER 2 axial load (k)
	PI(R 1 axial load (k) 199	asial load (k) 86.8 115	1 3 4 5	PIER 1 axial load (k) 277	PIER 2 axial load (k) 110 165
	1.4D PI(R 1 axial load (k) 199	86.8 115 211.5	3 4 5 8	PIER 1 axial load (k) 277	PIER 2 axial load (k) 110 165 248.25
	PI(R 1 axial load (k) 199	asial load (k) 86.8 115	1 3 4 5	PIER 1 axial load (k) 277	PIER 2 axial load (k) 110 165

321.75	570.05	tota	440.5	765 5
341./5	374.05		440.5	/65.5
ion Louis Arus	pport 18 floors			
rig Level 4 sq	pport 18 floors	-		1
6053	9306		8715	13111
				•

STRUCTURAL SYSTEM REDESIGN

- Introduction
- Existing Conditions
- Proposal
- Project Goals
- · Structural System Redesign
 - Gravity System
 - Lateral System
 - Impact on Foundations
- Lateral Analysis Wind
 - Seismic
 - **Breadth Studies**
 - Overall Summary and Conclusions

STRUCTURAL SYSTEM REDESIGN

- Introduction
- Existing Conditions
- Proposal Project Goals
- Structural System Redesign
 - Gravity System
 - Lateral System Impact on Foundations
- Lateral Analysis
 - Wind
 - Seismic

Breadth Studies

Overall Summary and Conclusions

- Introduction

- Structural System Redesign

- Lateral Analysis

Breadth Studies

Overall Summary and Conclusions

LATERAL ANALYSIS

LATERAL ANALYSIS

- Introduction
- Existing Conditions
- Proposal
- Project Goals Structural System Redesign
 - Gravity System
 - Lateral System
 - Impact on Foundations
- Lateral Analysis
 - Wind
 - Seismic
- Breadth Studies
- Overall Summary and Conclusions

and a		Wind	
mm	Story forces x-direction (E/W)		Story forces y-direction (N/S)
32.21k =	•	16.26 k —▶ ┏	
64.00 k	→	32.28 k	
63.97 k	•	32.27 k	
63.97k ———	*	32.27 k	
63.72 k	•	32.12 k	
61.52 k	•	30.84 k	
61.00 k	•	30.53 k	
60.58 k	•	30.28 k	
59.38 k	•	29,58 k	
58.78 k		29.24 k	
58.16 k		28.87 k	
56.70 k		28.02 k	
56.00 k		27.61 k	
54.50 k —		26.74 k	
53.25 k-		26.00 k	
51.62 k	1	25.05 k	
50.11 k	1	24,17 k	
48.32 k =	* I	23.12 k	
	·	21.06 k	
44.70 k	* I	17.55 k→	
37.82 k	•		

LATERAL ANALYSIS

- Introduction
- Existing Conditions
- Proposal
- Project Goals Structural System Redesign
 - Gravity System
 - Lateral System
 - Impact on Foundations

- Lateral Analysis

- WindSeismic
 - smic th Ctudios
- Breadth Studies
- Overall Summary and Conclusions

2221				Wind	
evel	Height (ft)	Floor to Floor H (ft)	Allow. drift (in)	disp. WX (in)	disp. WY (in)
Roof	258.50	13.00	7.755	1.416	4.916
20	245.50	13.00	7.365	1.336	4.695
19	232.50	13.00	6.975	1.255	4.470
18	219.50	13.00	6.585	1.173	4.240
17	206.50	13.00	6.195	1.091	4.004
16	193.50	13.00	5.805	1.007	3.761
15	180.50	13.00	5.415	0.922	3.512
14	167.50	13.00	5.025	0.837	3.257
13	154.50	13.00	4.635	0.752	2.997
12	141.50	13.00	4.245	0.667	2.733
11	128.50	13.00	3.855	0.584	2.465
10	115.50	13.00	3.465	0.502	2.196
9	102.50	13.00	3.075	0.421	1.931
8	89.50	13.00	2.685	0.345	1.601
7	76.50	13.00	2.295	0.272	1.268
6	63.50	13.00	1.905	0.203	0.942
5	50.50	13.00	1.515	0.141	0.631
4	37.50	13.00	1.125	0.087	0.350
3	24.50	12.50	0.735	0.041	0.117

0.360

0.014

0.039

wable Drift:

LATERAL ANALYSIS

Introduction

Existing Conditions

• Proposal

Project Goals Structural System Redesign

Gravity System

Lateral System

Impact on Foundations
 Lateral Analysis

• Wind

• Seismic

Breadth Studies

Overall Summary and Conclusions

Seismic

Seismic forces at each level

46.40 k---

21.82 k-----

15.53 k

10.32 k ----

Allowable Story Drift= 0.02h_{sv}

Actual Story Drift=Cd*Δ/I

			Seismic						
Level			all. Story drift (in)	x-disp. (in)	x-story drift (in)	δ _x (in)	y-disp. (in)	y-story drift (in)	δ _γ (in)
Roof	258.50	13.00	3.13	1.694	0.104	0.466	2.029	0.130	0.58
20	245.50	13.00	3.17	1.990	0.105	0.473	1.899	0.130	0.58
19	232.50	13.00	3.17	1.485	0.106	0.478	1.769	0.131	0.59
18	219.50	13.00	3.13	1.379	0.107	0.482	1.638	0.132	0.59
17	206.50	13.00	3.12	1.272	0.108	0.486	1.506	0.132	0.59
16	193.50	13.00	3.12	1.164	0.108	0.486	1.374	0.131	0.59
15	180.50	13.00	3.13	1.056	0.108	0.484	1.243	0.130	0.58
14	167.50	13.00	3.13	0.948	0.106	0.479	1.113	0.128	0.57
13	154.50	13.00	3.12	0.842	0.105	0.470	0.985	0.125	0.56
1.2	141.50	13.00	3.12	0.737	0.102	0.458	0.860	0.121	0.54
- 11	128.50	13.00	3.17	0.636	0.098	0,441	0.738	0.117	0.52
10	115.50	13.0X	3.12	0.538	0.097	0.438	0.622	-0.017	-0.07
9	102.50	13.00	3.12	0.440	0.087	0.393	0.639	0.125	0.56
	89.50	13.00	3.12	0.353	0.081	0.365	0.513	0.116	0.52
7	76.50			0.272	0.073	0.330	0.397	0.106	0.47
6	63.50	13.0X	3.12	0.198	0.065	0.290	0.291	0.094	0.42
. 3	50.50	13.00		0.134	0.054	0,244	0.197	0.079	0.35
4	37.50	13.00	3.13	0.080	0.042	0.189	0.118	0.061	0.27
3	24.50	12.50		0.038	0.021	0.095	0.057	0.043	0.19
2	12.00	12.0X	2.80	0.016	0.016	0.074	0.013	0.013	0.056

- Introduction

- Structural System Redesign

Breadth Studies

Overall Summary and Conclusions

BREADTH STUDIES

BREADTH STUDIES

- Introduction
- Existing Conditions
- Proposal
- Project Goals Structural System Redesign
 - Gravity System
 - Lateral System
 - Impact on Foundations
- Lateral Analysis
 - Wind

Seismic

Breadth Studies Overall Summary and Conclusions

Architectural Breadth

Complete Green Roof Design

Building Enclosure Breadth

BREADTH STUDIES

- Introduction
- Existing Conditions
- Proposal
- Project Goals
- Structural System Redesign
 - Gravity System Lateral System
 - Impact on Foundations
- Lateral Analysis
 - Wind
 - Seismic

Overall Summary and Conclusions

Breadth Studies

Goals

Zones

Impact on structure

Public

Transition

Architectural Breadth

Semi-public

BREADTH STUDIES

- Introduction
- Existing Conditions
- Proposal
- Project Goals
- Structural System Redesign
 - Gravity System
 - Lateral System
 - Impact on Foundations
- Lateral Analysis

 - Wind

Seismic

Breadth Studies Overall Summary and Conclusions

Final Plan

BREADTH STUDIES

- Introduction
- Existing Conditions
- Proposal
- Project Goals
- Structural System Redesign Gravity System
 - Lateral System

 - Impact on Foundations
- Lateral Analysis
 - Wind

Seismic

Breadth Studies Overall Summary and Conclusions

Fragrant Sumac (Rhus aromatica)

BREADTH STUDIES

- Introduction
- Existing Conditions
- Proposal
- Project Goals
- Structural System Redesign
 - Gravity System
 - Lateral System
 - Impact on Foundations
- Lateral Analysis
 - Wind

Seismic

Breadth Studies Overall Summary and Conclusions

Chive (Allium schoenoprasum) http://4.bp.blogspot.com

Purple Coneflower (Echinacea purpure

BREADTH STUDIES

- Introduction
- Existing Conditions
- Proposal
- Project Goals
- Structural System Redesign
 - Gravity System Lateral System
 - Impact on Foundations
- Lateral Analysis
- Wind
- Seismic
- **Breadth Studies**
- Overall Summary and Conclusions

BREADTH STUDIES

- Introduction
- Existing Conditions
- Proposal
- Project Goals
- Structural System Redesign
 - Gravity System
 - Lateral System
- Impact on Foundations
- Lateral Analysis
 - Wind

Seismic

Breadth Studies Overall Summary and Conclusions

- Introduction
- **Existing Conditions**
- Proposa
- Structural System Redesign
 - Gravity System
 - Impact on Foundatio
- Lateral Analysis
 - ar Ana
 - vinu

Breadth Studies

Overall Summary and Conclusions

OVERALL SUMMARY & CONCLUSIONS

OVERALL SUMMARY & CONCLUSIONS

- Introduction
- Existing Conditions
- Proposal
- Project Goals
- Structural System Redesign
 - Gravity System Lateral System
 - Impact on Foundations
- Lateral Analysis
 - Wind
 - Seismic
 - **Breadth Studies**
 - Overall Summary and Conclusions

Goals:

Conclusions:

- Reduced floor system depth by 8,25"
- Developed a greater understanding for PT design
- Created a roof garden for building occupants

advantages of design

- Floor system depth reduced, for the 20 story height could
- add another 13' story
- Foundations increased on average by 19-33% due to increased building weight
- Redesigned for lower loads than existing system Structure supporting green roof needs designed for significantly higher loads

- Unless limits are placed on depth of the floor system the cost of PT and increased building weight will most likely outweigh

ACKNOWLEDGEMENTS

Introduction

Existing Conditions

Structural System Redesign

Lateral System

Impact on Foundations

Lateral Analysis

Wind

Breadth Studies **Overall Summary and Conclusions** I would like to extend my deepest thanks and appreciation to the following individuals and companies.

Simpson Gumpertz & Heger:

Anindya Dutta Ronald Hamburger Amy Graver

Charlie Russo

Richard Apple

Steve Shanks

SKS Investments:

Holbert Apple Associates:

The Pennsylvania State University:

Dr. Linda Hanagan

Kevin Parfitt

Robert Holland